TK8620 模组评估板

规格和使用说明书

V1.1

修订记录

修订时间	修订版本	修订描述
2023-12-27	V1.1	修改 AT 指令的设置顺序
2023-09-13	V1.0	初稿

重要声明

版权所有 © 上海道生物联技术有限公司 2024。保留一切权利。

非经本公司书面许可,任何单位和个人不得对此文档的全部或部分内容进行使用、复制、修改、抄录,并 不得以任何形式传播。

TurMass[™]为上海道生物联技术有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有 人拥有。

上海道生物联技术有限公司保留随时变更、订正、增强、修改和改良此文档的权利,本文档内容可能会在 未提前知会的情况下不定期进行更新。

除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议都依赖于具体的操作环境,并 且不构成任何明示或暗示的担保。

联系方式

- 地址:上海嘉定皇庆路 333 号上海智能传感器产业园区 4 幢 5 层
- 邮编: 201899
- 电话: 021-61519850
- 邮箱: info@taolink-tech.com
- 网址: <u>www.taolink-tech.com</u>

目录

1产品简介4
2引脚定义
2.1 引脚分配图
2.2 功能描述
2.3 GPIO 默认状态6
2.4 I/O 接口特性6
3 尺寸7
3.1 外观尺寸7
3.2 天线要求
4 电源特性
5 射频特性
6功耗
7通信配置11
7.1 串口配置参数
7.2 P2P 模式11
7.3 单 Tone 模式11
7.4 RX 测试模式12
7.5
7.5 通信频只选择注意事项12 8 常用 AT 命令

图形目录

图 2-1 模块接口示意图	(俯视图)	5
图 3-1 天线连接器尺寸	示意图	7

表格目录

表 2-1 模块引脚描述	5
表 2-2 IO 属性定义	6
表 2-3 I/O 接口特性参	6
表 3-1 樟绀主天线要求	7
表 4-1 由 源特性	8

表 5-1	发射特性	9
表 5-2	接收特性	9
表 6-1	模组功耗1	10

1 产品简介

TK8620 模组评估板(TKB-621,以下简称TKB-621)是为方便TKM-200 模组测试而设计的,它是直接通过Type-C 接口的 USB 连接到电脑的。使用 MassConfig/串口调试助手对模 组进行参数设置,并进行相互通讯实现模组功能测试的目的。使用 TKB-621 无需再额外使 用电源适配器单独供电,直接使用 USB 接口供电即可,供电电流应 > 0.3A。

2 引脚定义

2.1 引脚分配图

图 2-1 模块接口示意图 (俯视图)

2.2 功能描述

编号	功能		默认
1	Type-c 5V 电源供电和模组的通信端口	J1	
2	电源开关	S2	
3	5V 转 3.3V LDO		
4	模组电流测试端口,测试电流是串联电流表	J3	默认短接
5	USB 转 TLL 芯片	U2	
6	TKM-200 模组		
7	模组 GPIO 外引管脚 A		
8	模组 GPIO 外引管脚 B		
9	模组复位按键		
10	天线 SMA 座		

表 2-1 模块引脚描述

属性	说明
PI	电源输入
GND	电源地
RF	射频信号
AIO	模拟双向
DI	数字输入

DO	数字输出	
DIO	数字双向	
NC	悬空	
CHIP_MODE	SOC 和收发器模式选择,默认拉低为 SOC 模式	

表 2-2 IO 属性定义

2.3 GPIO 默认状态

下表定义了在程序没有进行配置时,模组各 GPIO 的默认状态。

名称	默认状态
GPIO_0	输入,下拉
GPIO_1	输入,下拉
GPIO_2	输入,下拉
GPIO_3	输入,下拉
GPIO_4	输入,上拉
GPIO_5	输入,上拉
GPIO_6	输入,下拉
GPIO_7	输入,下拉

2.4 I/O 接口特性

参数	描述	最小值	最大值	单位
VIH	输入高电平电压	0.7 x VBAT	VBAT+0.3	V
VIL	输入低电平电压	-0.3	0.2 x VBAT	V
VOH	输出高电平电压	VBAT-0.3	VBAT	V
VOL	输出低电平电压	0	0.4	V

表 2-3 I/O 接口特性参

3 尺寸

3.1 外观尺寸

图 3-1 天线连接器尺寸示意图

3.2 天线要求

下表列出了对模组主天线的要求:

参数	描述
VSWR	≤2
效率	> 30%
特性阻抗	50Ω
线缆插入损耗(470Mhz)	< 1.5db

表 3-1 模组主天线要求

4 电源特性

TKB-621 采用 USB 结果 LDO 供电, 输入电压为 5V±0.5V, 供电输入至少要满足 0.3A 供流能力。模块输入电源要求如下表所示:

参数	描述	最小值	最大值	典型值	单位
USB	模块供电电源	4.5	5.5	5	V

表 4-1 电源特性

5 射频特性

频率	测试条件	发射功率 (曲刑使)	单位
	((央空道)	
	AT+TXP=15		
470~510MHz	AT+WORKMODE=71	20	dBm

表 5-1 发射特性

频率	测试条件 (环境温度: 25℃)	灵敏度 (典型值)	单位
470~510MHz	AT+RATE=6 AT+FREQ=490300000,490300000,49030000 0 AT+WORKMODE=72	-129	dBm

表 5-2 接收特性

6 功耗

工作模式	测试条件	功耗(典型值)	单位
休眠模式	休眠模式	1.5	uA
数据接收	RX 模式(scan 状态下)	14.5	mA
数据发送	发单 Tone,发射功率 20dBm	110	mA

表 6-1 模组功耗

7 通信配置

7.1 串口配置参数

串口波特率为115200bps, 8 位数据, 一位停止位, 无校验, 如下图: 参数设置如下:

项	参数
波特率	115200
数据位	8
停止位	1
校验位	无

7.2 P2P 模式

P2P 模式是变长突发模式,不带应答,测试 P2P 通信需要准备 2 个 TKB-621 模组,并 对其进行配置,配置步骤如下。模组 1 和模组 2 配置方法相同。

模组设置步骤:

1) 配置相关频率

示例: AT+FREQ=490300000,490300000,490300000 // 设置发送频率、接收频率及 BCN 频率为 490.3Mhz

AT_OK // 指令成功响应

2) 配置发射功率

示例: AT+TXP=15 /	// 设置发射功率模式为 15,发射功率 20dBm
-----------------	----------------------------

AT_OK // 指令成功响应

3) 配置通信速率

示例:	AT+RATE=6	// 设置无线传输速率为 6,	即 1.8Kbps
	AT_OK	// 指令成功响应	

4) 发送数据

示例: AT+SENB=010203040506070809 // 发送 16 进制数据

AT_OK // 指令成功响应

5) 配置通信模式

示例: AT+WORKMODE=21 // 设置工作模式为变长突发模式AT OK // 指令成功响应

配置完成后,从模组1发数据,模组2的串口打印信息里可以显示已收到 010203040506070809,则通信成功。

7.3 单 Tone 模式

单 Tone 模式用于测试模组的发射功率,对单 Tone 的频点和功率进行相关配置后,可 以用相关仪器测量模组的发射功率,一般配置方法如下。

1) 配置相关频率

示例: AT+FREQ=490300000,490300000,490300000 // 设置发送频率、接收频率及 BCN 频率为 490.3Mhz

AT_OK // 指令成功响应

2) 配置发射功率

示例:AT+TXP=15 // 设置发射功率模式为 15,发射功率 20dBmAT_OK // 指令成功响应

3) 配置通信模式

示例: AT+WORKMODE=71 // 设置工作模式为单 Tone 模式 AT_OK // 指令成功响应

配置成功后,即可用仪器测量到具体的频域波形。

7.4 RX 测试模式

RX 测试模式用于测试模组的接收灵敏度,对接收频点进行相关配置后,可以用相关仪器测量模组的接收灵敏度,一般配置方法如下。

- 1) 配置相关频率
 - 示例: AT+FREQ=490300000,490300000,490300000 // 设置发送频率、接收频率及 BCN 频率为 490.3Mhz

AT_OK // 指令成功响应

2) 配置通信模式

示例: AT+WORKMODE=72 // 设置工作模式为 RX 测试模式

AT_OK // 指令成功响应

配置成功后,模组进入 RX 测试模式,此时可用外部信号源发送波形,测试模组灵敏度。

7.5 通信频点选择注意事项

为保证模组的通信性能,建议频点设置为带小数点的频点如 xxx.3MHz、xxx.6MHz、 xxx.75MHz、xxx.8MHz 且尽量远离 32MHz 倍频的频点如 32MHz*13=416MHz、 32MHz*14=448MHz、32MHz*15=480MHz、32MHz*16=512MHz 等。在多信道通信时推荐信 道间隔采用 550KHz 或 1.25MHz 整数倍。

8 常用 AT 命令

AT 命令的使用方法见:《TK8620 开发板 AT 指令使用说明》

9 注意事项

1. 半双工工作方式

TKB-621 模组的通信方式是半双工的方式。同一时刻在同一信道网络中只允许一个模组向空中发射数据,多模组同时发送会引起网络碰撞,导致数据丢包,通信不稳定的情况发生。

2. 网络结构

TKB-621 可实现点对点和一点对多点的通信方式。用户可采用轮询的方式进行数据传输。

3. 现场网络布点

考虑到无线环境的复杂性和难预测性,用户规划方案前应做好应用现场的实地勘察工作。比如用 TKB-621 在现场做通信测试,逐步筛选和优化节点位置。前期合理的布点将大大提升网络的通信质量,加快施工进度,减少调试难度,降低后期维护的成本。

4. 集成及安装

兼容性设计是用户在集成设计时需要考虑的问题,包括结构尺寸、电磁兼容性等设计。 同时要考虑到天线的因素:

● 外置天线四周预留空间,不应紧贴结构件;

● 内置天线需要阻抗匹配;

● 在工况允许的前提下,现场天线的安装应尽量遵循架高、开阔、无遮挡的原则。

5. 常见故障分析处理

故障现象	可能原因	解决方法	
上由无反应 无上	电源连接不可靠,供电电压不稳、	更换电源线、调整电压、更	
	纹波大、电池电量低	换电池	
	模块硬件故障	模块损坏,返厂	
工作电流异常大/	· · · · · · · · · · · · · · · · · · ·	硬件损坏,返厂维修,同时	
异常低(不在休眠		检查设备其他电路是否存在	
状态)、发热	[快坏贝里寸找] 	异常	
	TKB-621 与设备之间的串口波特率		
通信异常,乱码/	或数据格式不一致	松本	
丢包	相互通信的 TKB-621 彼此波特率、	位旦开修以快坏的癿且中口	
	BW、模式或时隙不一致		
	无线环境改变(同频干扰、邻信道	检查天线、更换信道避开干	
	干扰、天线损坏)	扰	
通信不稳定,时好	EMC 干扰 TKB-621(模块附件有大	增加屏蔽盖、增加滤波电路	
时坏	功率设备,如:电机、变频器)	设计	
	TKB-621 干扰了用户电路(不常见	增加屏蔽盖、增加滤波电路	
	的原因)	设计	

9 注意事项

	传输距离达到临界,环境新增屏蔽	调整天线位置、更换高增益
	因素	天线、更换布点位置
	网络通信时序问题,出现空中碰撞	调整通信策略,避免多模组
		同时发送数据的情况发生
	USB 连接线断裂、锈蚀或接口松脱	更换 USB 连接线
	USB 线缆过长,引入干扰	缩短 USB 线到 1 米左右长
		度,并选用过载能力大于 1A
		的线材
	传输性能恶化(发射功率低、接收	
	灵敏度下降)	
传输距离近/变近	天线松动、锈蚀或损坏	紧固天线连接,更换天线
		优先考虑更换信道,调整/升
		级天线